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Abstract

Mechanical systems may experience undesirable and unexpected behavior and instability due to the effects of

nonlinearity of the systems. Many kinds of control methods to decrease or eliminate the effects have been studied. In

particular, bifurcation control to stabilize or utilize nonlinear phenomena is currently an active topic in the field of

nonlinear dynamics. This article presents some types of bifurcation control methods with the aim of realizing vibration

control and motion control for mechanical systems. It is also indicated through every control method that slowly varying

components in the dynamics play important roles for the control and the utilizations of nonlinear phenomena. In the first

part, we deal with stabilization control methods for nonlinear resonance which is the 1/3-order subharmonic resonance in a

nonlinear spring–mass–damper system and the self-excited oscillation (hunting motion) in a railway vehicle wheelset. The

second part deals with positive utilizations of nonlinear phenomena by the generation and the modification of bifurcation

phenomena. We propose the amplitude control method of the cantilever probe of an atomic force microscope (AFM) by

increasing the nonlinearity in the system. Also, the motion control of a two link underactuated manipulator with a free link

and an active link is considered by actuating the bifurcations produced under high-frequency excitation. This article is a

discussion on the bifurcation control methods presented by the author and co-researchers by focusing on the actuation of

the slowly varying components included in the original dynamics.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Mechanical systems generate a great variety of complex nonlinear phenomena [1], which can be often
characterized as bifurcation phenomena. The control of the properties of the bifurcation which is called
bifurcation control makes it possible to suppress the occurrence of nonlinear phenomena and to modify the
phenomena to desirable ones. Abed and Fu were among the first to propose the concept of the bifurcation
control [2] and in the past two decades, the bifurcation control and the practical applications to real systems
have achieved considerable progress. Some fundamental design techniques for bifurcation control are in Ref.
[3] and a comprehensive survey of the practical applications to not only mechanical systems but also electrical
and biological systems can be found in Ref. [4]. In the case of analyzing local bifurcation behavior near the
ee front matter r 2008 Elsevier Ltd. All rights reserved.

v.2008.03.018

ess: yabuno@mech.keio.ac.jp

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2008.03.018
mailto:yabuno@mech.keio.ac.jp


ARTICLE IN PRESS
H. Yabuno / Journal of Sound and Vibration 315 (2008) 766–780 767
bifurcation point, the first step is to simplify the original governing equations, i.e., to obtain the amplitude
equations or averaged equations by the averaging method [5] and the method of multiple scales [6], or other
methods and to perform the order reduction of the system by the center manifold theory [5]. The amplitude
equation usually expresses the slow time variation of complex amplitude which dominants the steady states
and their stability and the reduction corresponds to the extraction of the slow dynamics which determines the
essential dynamics. In particular, in the analysis for the stabilization of dynamical systems under high-
frequency excitation, the separation of dynamics into slow and fast components [7] and the construction
of the subsystem describing the slow dynamics are very important, and by investigating the subsystem
the stabilization mechanism is qualitatively clarified [8,9]. Also, some methodologies of bifurcation control
based on the dynamics of the subsystem obtained by the above simplification methods are theoretically
proposed [10–13].

The purpose of this article is to discuss some bifurcation control for stabilization control and motion
control in mechanical systems from the view point of actuating the slowly varying components included
in original dynamics. Actuation of the slow dynamics can shift a bifurcation point, eliminate a bifurcation,
generate a new bifurcation and modify the nonlinear characteristics of a bifurcation (for example from
subcritical bifurcation to supercritical one). As a result, we change the steady states and their stability
to avoid undesirable resonance and generate new steady states at desirable positions to perform motion
control.

In the first half, we deal with stabilization control of nonlinear phenomena based on bifurcation control. We
investigate the control for subharmonic resonance which can be produced in various nonlinear mechanical
systems (for example, rotor system [14], buckled beam [15], micro-cantilever [16], and so on). Autoparametric
vibration absorber is applied for the stabilization of the 1/3-order subharmonic resonance in a nonlinear
spring–mass–damper system [17]. The attachment of the absorber modifies the amplitude equation of the main
system and the resonance is suppressed independent of the magnitude of disturbance. Also, we consider the
self-excited oscillation (hunting motion) in a railway vehicle wheelset model [18,19]. We design a nonlinear
feedback control method for the system reduced on the center manifold in order to avoid the occurrence of the
resonance under large disturbance.

In the second half, we discuss positive utilizations of nonlinear phenomena. We propose an amplitude
control method for the self-excited micro-cantilever probe of an atomic force microscope (AFM) [20] by
artificially increasing the nonlinear viscous damping effect on the system. The utilization of a self-excited
cantilever is an idea to keep the resolution of the AFM high accuracy even for biological samples in the liquid
environment [21–23]. Then, the small steady-state amplitude of the micro-cantilever is required to avoid the
damage to the soft samples by the contact of the beam. For the purpose, an equivalent van der Pol oscillator
with small steady-state amplitude is realized by controlling the slow dynamics [24]. Finally, we consider the
motion control of a two link underactuated manipulator [25] with an active link and a free link which
are actuated and not directly actuated, respectively. The control target is not the amplitude of the motion of
the link, but the motion itself. Because the motion is not a slowly varying component, we apply high-frequency
excitation so that the time variation of the motion can be regarded as slow. Then, by actuating the slow
dynamics, we generate the steady states at desirable positions and change their stability desirably in order to
carry out the motion control of the free link without state feedback control [26,27].

This article is a discussion on the nonlinear control methods presented by the author and co-researchers
from the point of slowly varying dynamics.

2. Slow dynamics

Toward the discussions on bifurcation control based on the slow dynamics in the subsequent sections, we
briefly explain the separation of original dynamics into fast and slowly varying components by using a simple
example. We examine the dynamics of a spring–mass system with small negative damping whose equation of
motion is

d2x

dt2
� 2go

dx

dt
þ o2x ¼ 0, (1)
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where 0og51 and g ¼ �ĝðĝ ¼ Oð�ÞÞ. The exact solution is expressed as

x ¼ a0e
got cosð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
otþ f0Þ, (2)

where a0 and f0 are constants determined by the initial condition. The time history is expressed as Fig. 1 by
the fast varying periodic component with frequency near o and the slowly varying component corresponding
to the time variation of the amplitude, i.e., the envelope of the time history. There are many mechanical
systems whose characteristics are determined by the slow dynamics and for such systems, the actuation of the
slow dynamics can make it possible to change the principal properties of the dynamics as equilibrium points,
their stability, stability of periodic motion, and the magnitude of steady-state amplitude.

Equations governing the slow dynamics correspond to the amplitude equation or averaged equation
obtained by asymptotic approaches such as the method of multiple scales, averaging method, and so on [6].
We seek an approximate solution in the form

x ¼ x0 þ �x1 þ � � � . (3)

By introducing multiple time scales of t0 ¼ t and t1 ¼ �t, the first-order approximate solution of the original
equation (1) is obtained by the method of multiple scales as follows:

x � aðt1Þ cosðot0 þ f0ðt1ÞÞ. (4)

The slowly varying amplitude a is governed with the following averaged equation or amplitude equation:

da

dt1
� ĝoa ¼ 0 3

da

dt
� goa ¼ 0. (5)

Therefore, it is possible to control the stability by changing this equation, i.e., actuating the slow dynamics.
While the averaged equations for nonlinear systems are generally much more complex than Eq. (5), they are
more suitable to the design of control system than the original equations, because the dependence of the steady
states and their stability on the parameters is directly described by the averaged equations. In the following
sections, by controlling the slow dynamics, or by generating the slowly varying components, if it is not
inherently included in the original dynamics, we accomplish some stabilization control and motion control.

3. Stabilization of 1/3-order subharmonic resonance

The pendulum-type vibration absorber is often used as an autoparametric vibration absorber [28] because
the pendulum can be autoparametrically excited when the supporting point is vertically excited by the motion
of the main system under the case when the frequencies of the main system and the absorber are
commensurate [29]. There have been many studies so far since the invention of the autoparametric vibration
absorber by Haxton and Barr [30]. Jun et al. [31] theoretically discuss a saturation based absorber which
utilizes the mechanism of the autoparametric vibration absorber. Vyas et al. [32,33] theoretically and
experimentally investigate the effectiveness of an autoparametric vibration absorber under a wide external
0x

t

Fast mode

Slow mode

da
dt

− γa = 0

Fig. 1. Fast and slow dynamics of spring-mass system with negative damping.
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excitation frequency range using multiple pendulum. The effect of the autoparametric vibration absorber on
the parametric resonance is investigated by using the axially excited cantilever beam [34]. We consider the
effect of a pendulum-type autoparametric vibration absorber on 1/3-order subharmonic resonance, which is
induced depending on the magnitude of disturbance. In contrast with the case under the primary external
excitation, the 1/3-order subharmonic frequency component is completely suppressed when the autopara-
metric vibration absorber is in action [17].
3.1. 1/3-order subharmonic resonance

We consider a nonlinear spring–mass–damper system which is sinusoidally excited as shown in Fig. 2(a).
The main system can move freely only in z-direction. The main system is subjected to quadratic and
cubic nonlinear restoring force. The governing equation of motion is derived in the dimensionless form as
follows [17]:

€zþ mz _zþ ð1� 2�azz cos ntÞzþ azzz
2 þ azzzz3 ¼ � cos nt, (6)

where azz is the proportional constant with respect to the spring elongation squared and azzz is the
proportional constant with respect to the spring elongation cubed. The excitation amplitude � is small
ð0o�51Þ and small viscous damping m_z (mz ¼ Oð�2Þ) is taken into account. The linear natural frequency is
normalized as 1, and the excitation frequency and amplitude are n and �, respectively. It is easy from Eq. (6) to
predict that when the excitation frequency of the base n is in the neighborhood of triple the natural frequency
of the main system, i.e., n ¼ 3þ sðs ¼ Oð�2ÞÞ, 1/3-order subharmonic resonance is produced. In fact,
introducing multiple time scales t0 ¼ t, t1 ¼ �t, and t2 ¼ �2t, and assuming the solution of the main system as
follows:

z ¼ �z1 þ �
2z2 þ �

3z3, (7)

yields an approximate solution as

z ¼ aðtÞ cos
n
3

tþ gðtÞ
n o

. (8)

Here, we recall that the amplitude and phase, a and g, are slowly varied and the slow dynamics are governed
by the following averaged equations:

da

dt
¼ �

1

2
mza�

�P2

4
a2 sin 3g, (9)

a
dg
dt
¼ �

s
3
þ
�2P1

2

� �
a�

P3

8
a3 �

�P2

4
a2 cos 3g, (10)
θ

m

r

Main system

Pendulum-type vibration
absorber

z

Main system

F = z−zb+αzz(z−zb)2+αzzz(z−zb)3 

F = μ dz
dt

Base

o

zb = ε cosνt 

Fig. 2. Nonlinear spring–mass–damper system and application of autoparametric vibration absorber: (a) nonlinear spring–mass–damper

system: (b) application of autoparametric vibration absorber.



ARTICLE IN PRESS
H. Yabuno / Journal of Sound and Vibration 315 (2008) 766–780770
where P1;P2, are P3 are constant and expressed as follows:

L ¼
1

2ð1� n2Þ
,

P1 ¼ ð2L� 1Þ2 a2zz

�2

n2 � 4
þ 1

� �
�

3

2
azzz

� �
,

P2 ¼ ð2L� 1Þ �a2zz

1

3
þ

2

nðn� 2Þ

� �
�

3

2
azzz

� �
,

P3 ¼
10

3
a2zz � 3azzz.

From the averaged equations, the frequency response curve is described as Fig. 3(a), where the solid and
dashed lines stand for stable and unstable steady-state amplitudes, respectively. The solution of Eqs. (9) and
(10) under da=dt ¼ dg=dt ¼ 0 corresponds to the steady state of the amplitude and the phase, ast and gst. The
stability of the steady state is determined by the eigenvalue of the Jacobian matrix Eqs. (9) and (10) for a ¼ ast

and g ¼ gst. It can be seen from Fig. 3(a) that 1/3-order subharmonic resonance can occur depending on the
magnitude of disturbance in the lower excitation frequency range of s.

3.2. Stabilization by changing averaged equation

The control objective is here to avoid the occurrence of the 1=3-order subharmonic resonance independent
of the magnitude of disturbance. By attaching a pendulum-type vibration absorber, we try to stabilize the 1/3-
order subharmonic resonance. The equations of motion of the main system and the pendulum are as follows:

€zþ mz _zþ ð1� 2�azz cos ntÞzþ azzz2 þmrð_y
2
� o2

yy
2
Þ þ azzzz3 ¼ � cos nt, (11)

€yþ my _yþ o2
y þ

€z

r

� �
y�

1

6
o2

yy
3
¼ 0, (12)

where r is the dimensionless length of the pendulum and oy is the frequency ratio between the main system and
the pendulum. It is necessary that the effect of the absorber changes the averaged equations which govern the
slow dynamics and determine the stability of the steady states. For this purpose, we tune the natural frequency
of the pendulum as a half the natural frequency of the main system, oy ¼ 1=2þ r=2ðr ¼ Oð�ÞÞ, and increase
the number of the resonance terms to produce the secular term, because the averaged equations correspond
to the condition not to produce the secular term. We assume an approximate solution as:

z ¼ �z1 þ �
2z2 þ �

3z3, (13)

y ¼ �y1 þ �2y2 þ �3y3. (14)
1.2
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-0.075 -0.05 -0.025 0.0 0.025
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σ

1.2

1.0

0.8

0.6

0.4

0.2

0.0
-0.075 -0.05 -0.025 0.0

a

σ
0.025

Fig. 3. Change of frequency response curve by autoparametric vibration absorber: (a) absorber is not in action; (b) absorber is in action:

� ¼ 0:07, m ¼ 0:140, r ¼ 4:22, r ¼ 0:1, azz ¼ �0:65, azzz ¼ 0:359, mz ¼ 1:37� 10�2, my ¼ 3:17� 10�3: —— stable, ��� unstable.

(Reprint with permission from H. Yabuno, H. Endo, N. Aoshima, Stabilization of 1/3-order subharmonic resonance using an

autoparametric vibration absorber, Transactions of ASME Journal of Vibration and Acoustics 121 (1999) 309–315.)
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We have an approximate solution of Eqs. (11) and (12) as

z ¼ aðtÞ cos
n
3

tþ gðtÞ
n o

(15)

y ¼ 2brðtÞ cos
n
6

tþ 2biðtÞ sin
n
6

t. (16)

By applying the method of multiple scales, we obtain the averaged equations governing the slow dynamics of a

and g for the main system and of br and bi for the absorber as follows:

da

dt
¼ �

1

2
mza�

�P2

4
a2 sin 3g

þmro2
yðr� 2Þðb2

r � b2
i Þ sin gþ 2mro2

yð2� rÞbrbi cos g, (17)

a
dg
dt
¼ �

s
3
þ
�2P1

2

� �
a�

P3

8
a3 �

�P2

4
a2 cos 3g

þmro2
yðr� 2Þðb2

r � b2
i Þ cos g� 2mro2

yð2� rÞbrbi sin g�
P12

2
ðb2

r þ b2
i Þa, (18)

dbr

dt
¼

r
2
�

my
2

� �
br þ

s
6
þ
�2Q1

2oy

� �
bi þ

1

8ro2
y

rþ 2oyð Þabr sin g

�
1

8ro2
y

ð2oy þ rÞabi cos gþ
Q3

2oy
ðb2

r þ b2
i Þbi þ

Q21

8oy
a2bi, (19)

dbi

dt
¼

r
2
�

my
2

� �
bi �

s
6
þ
�2Q1

2oy

� �
br �

1

8ro2
y

2oy þ rð Þabr cos g

�
1

8ro2
y

2oy þ rð Þabi sin g�
Q3

2oy
ðb2

r þ b2
i Þbr �

Q21

8oy
a2br, (20)

where P12, Q1, Q21, and Q3 are expressed as follows:

P12 ¼ m oy � 3þ
2oy

1þ 2oy

� �
,

Q1 ¼ �
2L2n4

r2ðn2 � 4o2
yÞ
,

Q3 ¼
moy
2
� 2mo2

y þ
o2

y

2
,

Q21 ¼
�1

r2
1

1þ 2oy
þ

1

4o2
y

� �
. (21)

Here, the third and fourth terms in the right-hand side of Eq. (17) and the fourth, fifth, and sixth terms in the
right-hand side of Eq. (18) are the effects of the specially frequency tuned pendulum-type vibration absorber
and through these terms, the energy transfer between the main system and the absorber is induced. In the case
when the absorber is in action, the steady states shown in Fig. 3(b) can be numerically found for the main
system. Then, only the steady state of the absorber corresponding to these steady states is stable and trivial. As
can be seen from comparison between Figs. 3(a) and (b), the nontrivial steady states of the main system are the
same in the cases when the absorber is not in action (the pendulum is mechanically fixed) and in action.
However, the stable nontrivial steady state is changed to unstable one and then only the stable steady state is
the trivial one. As a result, the 1/3-order subharmonic resonance can be suppressed independent of the
magnitude of disturbance. A sufficient condition, such that all the nontrivial steady states are unstable by
the effect of the absorber, is derived from the following investigation. The local stability of the steady state
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(a ¼ ast, g ¼ gst, br ¼ 0, bi ¼ 0) is determined from the Jacobian matrix J of (17)–(20):

J ¼

J11 J12 0 0

J21 J22 0 0

0 0 J33 J34

0 0 J43 J44

2
6664

3
7775, (22)

where

J11 ¼ �
mz

2
�
�P2

2
ast sin 3gst; J12 ¼ �

�P2

4
a2
st cos 3gst,

J21 ¼ �
s

3ast
�
�2P1

2ast
�

3P3

8
ast �

�P2

2
cos 3gst; J22 ¼

�P2

4
ast sin 3gst,

J33 ¼
r
2
�

my
2
þ

1

8ro2
y

ð2oy þ rÞast sin gst,

J34 ¼
s
6
þ
�2Q1

2oy
þ

Q21

8oy
a2
st �

1

8ro2
y

ð2oy þ rÞast cos gst

J43 ¼ �
s
6
�
�2Q1

2oy
�

Q21

8oy
a2
st �

1

8ro2
y

ð2oy þ rÞast cos gst,

J44 ¼
r
2
�

my
2
�

1

8ro2
y

ð2oy þ rÞast sin gst.

Here, ast and gst are those obtained from Eqs. (9) and (10) in the case when the absorber is not in action. Also,
the 2� 2 upper left matrix of the Jacobian matrix J is the same as the Jacobian matrix of Eqs. (9) and (10) for
a ¼ ast and g ¼ gst. Then, the stability of the nontrivial steady state of the main system, in the case when the
absorber is in action, is determined by the eigen value of the 2� 2 lower right matrix:

J0 ¼
J33 J34

J43 J44

" #
. (23)

Therefore, a sufficient condition such that matrix J0 has an unstable eigenvalue is J33 þ J44 ¼ r� my40. This
method is based on the modification of the bifurcation characteristics in the slow dynamics and can be
classified into bifurcation control.
4. Nonlinear control for hunting motion of railway vehicle wheelset

4.1. Hunting motion of railway vehicle wheelset

Railway vehicle wheelset experiences the problem of hunting above a critical running speed [35] due to
circulatory [36] contact force between the wheels and the rails. The two-degrees-of-freedom model with respect
to lateral and yawing motions, y and c, is shown in Fig. 4. The wheelset is suspended with springs from the
truck. The wheelset generally has the tread angle ge as shown in this figure to make the running performance
on a curved rail smoother. On the other hand, this tread angle makes the running performance on the straight
rail worse owing to the following reason. We consider the situation in which the wheelset is moving in the
positive y-direction under disturbance. The peripheral speed of the part of the left wheel in contact with the
rail is higher than that of the right one. Also, because the left and right wheels have the same angular velocity,
slips between the wheels and rails occur and a special contact force, that is, the so called creep force, is
produced on the surface of the wheels. The equations of motion are as follows [19]:

m €y ¼ �
2ky

v
_y� kyþ 2kyc (24)
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Fig. 4. Two-degrees-of-freedom model of railway vehicle wheelset.
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I €c ¼ �
2d2

0kx

v
_c�

2d0kxge

r0
y�Mc, (25)

where m, I, kx, ky, ky, k, M, 2d, r0, and v are the mass of wheelset, the moment of inertia, the longitudinal
creep coefficient, the lateral creep coefficient, stiffness in the y-direction, a proportional constant of restoring
moment, the gauge, the radius of the wheel at the contact point to the rail, and running speed, respectively.

In a high-speed run, it is known that the contact force causes a self-excited oscillation called hunting motion.
This occurs because the contact force appears as nonconservative or circulatory forces, which is the third term
in the right-hand side of Eq. (24) and the second term in the right-hand side of Eq. (25). From the root loci of
the equations of motion with respect to v, the critical speed vcr, above which the hunting motion is produced, is
obtained in the linear sense and the critical speed corresponds to the stability boundary in the case of a small
disturbance. Under a large disturbance, the hunting motion can be produced even below the critical speed,
because at the critical speed, subcritical Hopf bifurcation [37] occurs. Therefore, the equations of motion,
Eqs. (24) and (25), can be rewritten to the following equations which include cubic nonlinear terms:

m €y ¼ �
2ky

v
_y� kyþ 2kyc

þ kyyyy3 þ kyycy2cþ kyccyc2
þ kcccc

3 (26)

I €c ¼ �
2d2

0kx

v
_c�

2d0kxge

r0
y�Mc

þMyyyy3 þMyycy2cþMyccyc2
þMcccc

3. (27)

Furthermore, these equations are nondimensionalized as

_x ¼

0 1 0 0

�c1 �c2 c3 0

0 0 0 1

�c5 0 �1 �c4

2
666664

3
777775xþ

0

c1� _y
� þ c6y

�3 þ c7y�2cþ c8y�c2
þ c9c

3

0

c4� _y
� þ c10y�3 þ c11y�2cþ c12y�c2

þ c13c
3

2
666664

3
777775,

x ¼ ½y� _y� c _c�T, (28)

where dimensionless parameters c6 � � � c13 are assumed as nonlinear effects of contact force. The dimensionless
running speed v� is assumed to be in the neighborhood of the critical speed v�cr: v� � v�cr ¼ �ðj�j51Þ. Slow
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dynamics, which is extracted from the original dynamics by the center manifold theory, is described on the
plane as Fig. 5(a); the original forth-order dynamics of Eq. (28) is reduced to second-order slow dynamics. The
distance of the locus from the origne on the plane is expressed from normal form theory [5] as

_r ¼ a1�rþ a3r3, (29)

where a140 and a340. The magnitude of the unstable limit cycle produced through the subcritical Hopf
bifurcation corresponds to the dashed branch in Fig. 6. Therefore, the hunting motion can be produced under
a large disturbance even if the running speed is below the critical speed ccr. In the next section, we propose a
nonlinear control method to stabilize the hunting motion below the critical speed independent of the
magnitude of disturbance.

4.2. Design of nonlinear feedback gain on center manifold

By applying nonlinear control force proportional to y cubed to the wheelset in the y-direction, we change
the subcritical Hopf bifurcation to a supercritical Hopf one. The nonlinear feedback gain is designed on the
center manifold to bend the bifurcation branch to the right as the solid branch in Fig. 6. The effect of the
nonlinear feedback appears in the coefficient of the second term in Eq. (30) as

_r ¼ a1�rþ ða3 � a3�contÞr3, (30)

where a3�cont is the nonlinear feedback gain on the center manifold transformed from the original nonlinear
feedback gain knon under control force in y direction, F cy ¼ �Knony3, that is added to Eq. (24). In order to
change the subcritical Hopf to the supercritical one, we determine Knon so that a3�cont is larger than a3. Then,
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there is no unstable limit cycle below the critical speed and the hunting motion cannot occur below the critical
speed, independent of the magnitude of disturbance.

We have introduced stabilization control methods for nonlinear phenomena, in Sections 3 and 4. In the
latter half of this paper, we consider useful applications of nonlinear phenomena for amplitude control and
motion control. Also in these cases, slow dynamics play important roles in their applications.

5. Amplitude control of AFM cantilever probe

5.1. Principle of atomic force microscopy and control objective

AFM has been applied widely as a powerful tool for nanoscale imaging in surface science and biological
science [38]. Frequency modulation atomic force microscopy (FM-AFM) is a method of observing the profile
of the surface by detecting the equivalent natural frequency of the cantilever probe (Fig. 7) [39] depending on
the distance between the tip of the probe and the surface and by observing frequency modulation while
scanning the surface. There are two difficulties for the application to the imaging of living biological samples.
The first one comes from the use in a liquid environment. The high damping causes poor-quality factor for the
oscillation of the cantilever. The other difficulty is based on the need to keep the molecules biologically active.
It requires sensing with as low a contact force as possible. To overcome the first difficulty, the frequency
modulation (FM) detection by self-excited oscillation in the cantilever beam has been proposed [23] because
the response frequency of the self-excited oscillation is self-tuned and always the natural frequency of the
system even if it is changed; this characteristic of the self-excited oscillation has been also utilized to keep
resonant state for realizing machines with high productivity and low energy consumption [40]. The purpose of
this study is to devise a method of overcoming the second difficulty. We propose an amplitude control method
for the self-excited cantilever probe [24].

5.2. Van der Pol type self-excited cantilever probe

The self-excited cantilever probe has been realized by applying positive linear velocity feedback control. In
this case, as predicted by the characteristic of the self-excited oscillation, the amplitude of the self-excited beam
is determined by the magnitude of nonlinearity of the environment, for example, the cubic damping effect. To
make the steady-state amplitude sufficiently small, we apply an additional nonlinear damping via nonlinear
feedback. As a result, we design the dynamics equivalent to a van der Pol oscillator in the cantilever. We
consider an analytical model of a cantilever beam with a piezo actuator as shown in Fig. 8 [41] and apply
voltage to the piezo actuator on the basis of a nonlinear feedback equation such as

Va ¼ K2
qv

qt

				
s¼l

� K3v2 s¼l

qv

qt

				
				
s¼l

, (31)

where the first term is the positive velocity feedback for production of self-excited oscillation. The second term
is the equivalent nonlinear viscous damping for realizing the dynamics of the van der Pol oscillator in the
micro-cantilever and for carrying out amplitude control. In Fig. 8, the coordinate is set along the cantilever’s
Fig. 7. Micro-cantilever.
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Fig. 8. Analytical model of micro-cantilever.
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elastic axis as s. The transverse deflection with respect to the deformed axis at s is vðs; tÞ. The cantilever is
assumed to behave as an Euler–Bernoulli beam. The dimensionless equation of motion and the associated
boundary conditions are

€v� þ ðmlin þ mnonv�2Þ_v� þ v�0000

¼ fklin _v
�js�¼1 � knonv�2js�¼1 _v

�js�¼1g½hðs
� � s�1Þ � hðs� � s�2Þ�

00, (32)

v�000js�¼1 ¼ v�00js�¼1 ¼ v�0js�¼0 ¼ v�js�¼0 ¼ 0. (33)

The derivatives with respect to t� and s� are denoted, respectively, as ð_Þ and ð0Þ. The second term in the left-
hand side of Eq. (32), ðmlin þ mnonv�2Þ_v� is the damping effect in the environment. The right-hand side in
Eq. (32) expresses the effects of the feedback to make characteristics of van der Pol oscillator; klin and knon are
linear and nonlinear feedback gains, respectively.
5.3. Slow dynamics and amplitude control

We scale the parameters as mlin ¼ �
2m̂lin, and klin ¼ �2k̂lin, where the order of parameters with the symbol of

ð̂Þ is Oð1Þ. We apply the method of multiple scales. Third-order uniform expansion of the solution is
determined letting v� in the form

v� ¼ �v1 þ �
3v3 þ � � �

¼
�

2
aðt2Þe

ifðt2Þeiot0F1ðsÞ þ �
3eiot0F3ðs; t2Þ þ CCþ � � � , (34)

where t0 ¼ t is the first time scale to express the time variation of the periodic component and t2 ¼ �2t is the
stretched time scale to express the time variation of the complex amplitude due to the nonlinearity. CC denotes
the complex conjugate of the preceding terms, and o and F1ðsÞ are the linear first natural frequency and the
fist mode shape. Equating like powers of � yields

D2
0v1 þ v00001 ¼ 0, (35)

v0001 js�¼1 ¼ v001js�¼1 ¼ v01js�¼0 ¼ v1js�¼0 ¼ 0, (36)

D2
0v3 þ v00003 ¼ �2D2D0v1 � ðm̂lin þ mnonv21ÞD0v1

þ fk̂lin � knonv21js�¼1gD0v1js�¼1½hðs
� � s�1Þ � hðs� � s�2Þ�

00, (37)

v0003 js�¼1 ¼ v003js�¼1 ¼ v03js�¼0 ¼ v3js�¼0 ¼ 0, (38)

where D0 and D2 are derivative with respect to t0 and t2, respectively. The slow time variation of
the amplitude a is governed by the following averaged equation which is the solvability condition
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of F3 [24]:

da

dt
þ

mlin
2
� b1klin

� �
aþ

1

4
ðb2mnon þ b3knonÞa

3 ¼ 0, (39)

where b1;b2; and b3 are constant functions of F1. This amplitude equation is equivalent to that of van der Pol
oscillator. The steady-state amplitude is

ast ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b1klin � 2mlin
b2mnon þ b3knon

s
. (40)

When the positive velocity feedback gain satisfies klinomlin=ð2b1Þ, the self-excited oscillation occurs. Higher
nonlinear feedback gain of knon accomplishes the self-excited oscillation with smaller steady-state amplitude to
avoid the contact with the sample.

6. Motion control of underactuated manipulator by bifurcation control under high-frequency excitation

Finally, we propose the motion control of an underactuated manipulator shown in Fig. 9(a). This two link
system has no actuator at the second joint, and the number of degrees-of-freedom is greater than the number
of actuators. Such manipulators are generally called underactuated manipulators (a comprehensive list of
references can be found in Ref. [25]). From the practical point of view, the investigation into the motion
control is very useful for overcoming actuator failure due to unexpected accidents in space environment. Our
control objective is to swing up the free link to the upright position and stabilize it at this state. Different from
conventional studies on underactuated manipulators, we consider the situation where a free joint lacks not
only an actuator but also a sensor. Because state feedback control is not utilized in this situation, we try to
actuate slow dynamics similar to the previous three control methods. However, while the amplitude control is
accomplished by focusing on the slowness of the time variation of amplitude in the previous problems, the
control target in the underactuated manipulator is not the amplitude but the state of the angle. In order to use
the approach based on the actuation of the slow dynamics as well as the previous problems, the time variation
of the state of the angle has to be regarded as slow. To this end, we apply a periodic excitation with high-
frequency which is much higher than the natural frequency of the free link [27].

6.1. Bifurcation control of free link

We set the position of the first link, that is, the active link, as

y1 ¼ ae cosotþ y1off . (41)
g

x

y
o

l1

l2

l2g

l1g

θ2

θ1

τ

m1

m2

First joint (Active joint)

First link

Second link

Second joint

(Active link)

(Free link)

(Free joint)

θ1οff = π/2θ1οff = π/4θ1οff = 0

Fig. 9. Underactuated manipulator: (a) analytical model of underactuated manipulator; (b) demonstration of swing-up by bifurcation

control: m1 ¼ 1:1� 10�1kg, m2 ¼ 2:14� 10�2kg, l1 ¼ 1:02� 10�1m, l2 ¼ 1:00� 10�1m, l1g ¼ 5:70� 10�2m, l2g ¼ 1:65� 10�2m,

I2 ¼ 1:74� 10�5kgm2, o=ð2pÞ ¼ 45Hz. (Reprint with permission from H. Yabuno, H. Matsuda, N. Aoshima, Reachable and

stabilizable area of an underactuated manipulator, IEEE/ASME Transactions on Mechatronics 10 (2005) 397–403. rE2005 IEEE.)
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The first term is for giving high-frequency excitation, and the second term expresses the configuration of the
first link with respect to the direction of the gravitational force. For example, when y1off is 0, the second joint is
approximately excited in the horizontal direction. When y1off is p=2, the second joint is approximately excited
in the vertical direction. In this state, the free link has the dynamics similar to Kapitza pendulum [42]. It is
theoretically shown that by changing y1off from 0 to p=2, the second link can be swung up as the experimental
result in Fig. 9(b).

Under this excitation, the dimensionless equation of motion is expressed as

€y2 þ m_y2 � aec cos t� cos y2 þ a2
ec sin y2

þ s sinðae cos t� þ y1off þ y2Þ ¼ ae cos t�, (42)

where t� is the dimensionless time, m expresses the dimensionless damping ratio, and the other dimensionless
parameters are as follows:

c ¼
m2l1l2g

I2 þm2l
2
2g

; s ¼
m2l2gg

ðI2 þm2l22gÞo2
.

The parameters, m2, l2, l2g, and I2, denote the mass and length of the free link, the distance between the free
joint and the center of gravity, and the mass moment of inertia about the center of the free link, respectively.
The parameter l1 denotes the length of the active link. The parameter s is proportional to the inverse of the
excitation frequency o squared and small s means high-frequency excitation. We introduce multiple time
scales as t0 ¼ t�, t1 ¼ �t�, and t2 ¼ �2t�, and assume the uniform expansion of the solution as
y2 ¼ y20 þ �y21 þ �2y22. Then, by applying the method of multiple scales, we can extract the averaged
equation governing the slow dynamics as follows [26]:

€y2 þ m_y2 þ s sinðy1off þ y2Þ �
c2a2

e

2
sin y2 cos y2 � 0. (43)

Because the equation is autonomous, we carry out bifurcation analysis.
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Fig. 10. Equilibrium space of free link (The combination of branches of (a), (b), and (c) is supercritical pitchfork bifurcation. The

combination of branches of (a)0, (b)0, and (c)0 is perturbed supercritical pitchfork bifurcation. The combination of branches of (c)00and

(d)00is subcritical pitchfork bifurcation. The stable branches of (c), (c)0 and (c)00are smoothly connected from y1off ¼ 0 to p=2. The free link
is swing up along the line with arrow on the surface formed by these stable branches.) (Reprint with permission from H. Yabuno, K. Goto,

N. Aoshima, Swing-up and stabilization of an underactuated manipulator without state feedback control, IEEE Transactions on Robotics

and Automation 20 (2004) 359–365.rE2004 IEEE.)
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Fig. 10 [26] shows the equilibrium space of the free link with respect to the parameters s and y1off ;
solid and dashed lines denote stable and unstable equilibrium states, respectively. The supercritical and
subcritical pitchfork bifurcations are produced in the cases of y1off ¼ 0 (combination of branches of (a), (b),
and (c)) and y1off ¼ p=2 (combination of branches of (c)00 and (d)00), respectively. Also, in the case of
0oy1offop=2, branches formed by the combination of perturbed supercritical and subcritical pitchfork
bifurcations exist as the red lines. We can see in Fig. 10 a perturbed supercritical pitchfork bifurcation which is
the combination of branches of (a)0, (b)0, and (c)0. The stable branches of (c), (c)0, and (c)00 are smoothly
connected from y1off ¼ 0 to p=2. Therefore, in the high-frequency excitation range (for example s ¼ sa), the
stable steady state of the free link is continuously changed from the downward position to the upright position
with increase of y1off . Then, we carry out the swinging-up of the free link from the downward position along
the line with arrow and the stabilization at the upright position.

7. Summary

We have introduced vibration and motion control methods for some mechanical systems. As mechanical
systems become lighter, faster, and more flexible, various nonlinear phenomena can be easily produced. The
essential characteristics such as stability and bifurcation are usually described by slowly varying components
included in the original dynamics. Therefore, it is effective to actuate the slow dynamics not only for
suppressing the occurrence of nonlinear phenomena but also for positively utilizing the properties of nonlinear
phenomena. Also, regarding the final topic of an underactuated manipulator, the positive utilization of
nonlinearity inherently existing in mechanical systems is expected to realize high-performance mechanical
systems.
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